Descriptif
In earth sciences, natural resource development, and environmental studies, probabilistic models are used for the prediction and the quantification of uncertainties due to sparse sampling, measurement error, or indirect observations of the phenomenon under study. As the observations cannot be considered independent in this context, standard statistical or machine learning approches are not well suited while lacking interpretability. This course aims at giving basic elements for the mathematical modeling of regionalized phenomena by probabilistic methods. It thus provides a first introduction to geostatistics and spatial statistics.
Objectifs pédagogiques
In earth sciences, natural resource development, and environmental studies, probabilistic models are used for the prediction and the quantification of uncertainties due to sparse sampling, measurement error, or indirect observations of the phenomenon under study. As the observations cannot be considered independent in this context, standard statistical or machine learning approches are not well suited while lacking interpretability. This course aims at giving basic elements for the mathematical modeling of regionalized phenomena by probabilistic methods. It thus provides a first introduction to geostatistics and spatial statistics.
effectifs minimal / maximal:
10/30Diplôme(s) concerné(s)
- Ingénieur AgroParisTech
- Accueillis cursus ing 2e et 3e année (erasmus et école)
- Accueillis IAE forestiers (ingénieurs de l'Institut Agro Dijon)
- Accueillis en master (erasmus et autres prog.)
- MASTER - NUTRITION ET SCIENCES DES ALIMENTS
UE de rattachement
- 2A-UEchoix-S1 : UE à choix Semestre 1,
- M1 ATHENS-MP16 : Geostatistics
domaines ParisTech
Système d'information - Modélisation.Format des notes
Numérique sur 20Pour les étudiants du diplôme MASTER - NUTRITION ET SCIENCES DES ALIMENTS
Le coefficient de l'UE est : 1
Pour les étudiants du diplôme Ingénieur AgroParisTech
Le coefficient de l'UE est : 2
Pour les étudiants du diplôme Accueillis cursus ing 2e et 3e année (erasmus et école)
Pour les étudiants du diplôme Accueillis IAE forestiers (ingénieurs de l'Institut Agro Dijon)
Pour les étudiants du diplôme Accueillis en master (erasmus et autres prog.)
Programme détaillé
General introduction and introduction to the R software (www.r-project.org). Random function models, Inference, Prediction (Kriging and simulations)
Mots clés
Biochemistry, Biology, Chemistry, Earth Sciences, Environmental sciences, Mathematics, Natural environments and wildlife, Physics, Statistics